

Algebraic Multigrid Techniques for the eXtended Finite Element Method

Axel Gerstenberger, Ray Tuminaro

Thanks to: E. Boman, J. Gaidamour (Sandia), B. Hiriyur, H. Waisman (Columbia U.)

- Motivation
 - · A brief review of XFEM & Smoothed Aggregation Algebraic Multigrid (SA-AMG)
 - · Why does standard SA-AMG fail & how to fix it
 - Examples
 - Conclusion

SAND 2011-7629C

Objective: Employ parallel computers to better understand how fracture of land ice affects the global climate. Fracture happens e.g. during

- the collapse of ice shelves,
- the calving of large icebergs, and
- the role of fracture in the delivery of water to the bed of ice sheets.

Ice shelves in Antarctica:

Larsen 'B' diminishing shelf 1998-2002

Other example: Wilkins ice shelf 2008

Amery ice shelf

Glacial hydrology

(Source: http://www.sale.scar.org)

Linear elastic XFEM Formulation for Cracks

Displacement approximation (shifted basis form.)

$$u^{h}(\mathbf{x}) = \sum_{I=1}^{n} N_{I}(\mathbf{x}) u_{I}$$

$$\bullet + \sum_{i=1}^{n_{h}} N_{I_{i}}(\mathbf{x}) \left(H(\mathbf{x}) - H(\mathbf{x}_{I_{i}})\right) a_{I_{i}}$$

$$\bullet + \sum_{i=1}^{n_{f}} N_{\hat{I}_{i}}(\mathbf{x}) \sum_{J=1}^{n_{J}} \left(F_{J}(\mathbf{x}) - F_{J}\left(\mathbf{x}_{\hat{I}_{i}}\right)\right) b_{\hat{I}_{i}J}$$

- Jump Enrichment
- Tip Enrichment (brittle crack)

$$H(\boldsymbol{x}) = \begin{cases} 0.5 & \text{in } \Omega^{+} \\ -0.5 & \text{in } \Omega^{-} \end{cases}$$

$$F_{J}(r, \theta) = \begin{cases} \underbrace{\sqrt{r} \sin\left(\frac{\theta}{2}\right)}_{J=1}, \underbrace{\sqrt{r} \cos\left(\frac{\theta}{2}\right)}_{J=2}, \underbrace{\sqrt{r} \sin\left(\frac{\theta}{2}\right) \sin(\theta)}_{J=1}, \underbrace{\sqrt{r} \cos\left(\frac{\theta}{2}\right) \cos(\theta)}_{J=1}, \underbrace{\sqrt{r} \cos\left(\frac{\theta}{2}\right) \cos(\theta)}_{J=1}, \underbrace{\sqrt{r} \cos\left(\frac{\theta}{2}\right) \cos(\theta)}_{J=1}, \underbrace{\sqrt{r} \cos\left(\frac{\theta}{2}\right) \cos(\theta)}_{J=1}, \underbrace$$

Bubnov-Galerkin method → Symmetric global system

$$egin{aligned} m{A} &= \sum_e \int_{\Omega_e} m{B}_e^{\mathrm{T}} m{C} m{B}_e \, \mathrm{d} m{x} \ m{f} &= \sum_e \int_{\Gamma_e} m{N}_e^{\mathrm{T}} h \, \mathrm{d} m{x} + \sum_e \int_{\Omega_e} m{N}_e^{\mathrm{T}}
ho \, \mathrm{d} m{x} \end{aligned} \qquad m{A} m{U} = m{f}$$

Current implementation: bi-linear, Lagrange polynomials, guad4 elements

Multigrid principles

- Oscillatory components of error are reduced effectively by smoothing, but smooth components attenuate slower
 - \rightarrow capture error at multiple resolutions using grid transfer operators $\mathbf{R}^{[k]}$ and $\mathbf{P}^{[k]}$
 - → optimal number of linear solver iterations
- In AMG, transfer operators are obtained from graph information of A
- → ideal for general, unstructured meshes solve Au=b using recursive multilevel V Cycle:

function $u \leftarrow \text{multilevel}(b, u, k)$ smooth (pre-smoothing) If k < maxlevel: restrict u to coarser level compute u on coarser level interpolate u to finer level smooth (post-smoothing) return u

- iterative smoothers on finest and intermediate levels
- direct solve at the coarsest level

'Standard' SA-AMG for fracture problems

Possible issues:

- XFEM matrix graph messes with aggregation
 - Assumption of 2 unknowns per node not true
 - Aggregates should not cross crack
- How to define rigid body modes?
 - Modes are used to define nullspace
- How to deal with large condition numbers?
 - Define smoothers for each level

Distinct region representation

K

Μ

XFEM: modified shifted enrichment $\sum_{I} N_{I}(x) |H(x) - H(x_{I})| a_{I}$

$$\sum_I N_I(x) |H(x) - H(x_I)| dx$$

$rac{EA}{2h_1}$	- 2	$egin{array}{ccc} -2 & & & & & & & & & & & & & & & & & & $	0	0	0	0
	-2	4	1	-2	-1	0
	0	1	1	-1	0	0
	0	-2	-1	4	1	-2
	n	1	Ω	1	1	0
	0	0	0	-2	0	2 .

$$\frac{EA}{2h_1} \begin{bmatrix} 2 & -2 & 0 & 0 & 0 & 0 \\ -2 & 6 & -4 & 0 & 0 & 0 \\ 0 & -4 & 4 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 4 & -4 & 0 \\ 0 & 0 & 0 & -4 & 6 & -2 \\ 0 & 0 & 0 & 0 & -2 & 2 \end{bmatrix}$$

Phantom node approach

$$\frac{EA}{2h_1} \begin{bmatrix} 2 & -2 & 0 & 0 & 0 & 0 \\ -2 & 3 & -1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 3 & -2 \\ 0 & 0 & 0 & 0 & 0 & -2 & 2 \end{bmatrix}$$

$$\frac{\rho A h_1}{24} \begin{bmatrix} 8 & 4 & 0 & 0 & 0 & 0 \\ 4 & 15 & 2 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 2 & 15 & 4 \\ 0 & 0 & 0 & 0 & 4 & 8 \end{bmatrix}$$

Aggregation for phantom nodes: 1D

Aggregates are **not** connected on any level!

Change of basis: 1d

Do XFEM developers have to use the phantom node approach? No!

For each node I with jump DOFs: $\phi_I - \vec{\phi}_I = \phi_{lpha}$

G

(similar: Menouillard 2008, ...)

- is extremely sparse,
- is simple to produce,
- exists for higher order Lagrange Polynomials and multiple dimensions.

Change of basis: 2d

Modified shifted enrichment

Phantom node approach

Conj. Gradient preconditioned with AMG

A Shifted enrichment

 $G^{\mathrm{T}} \cdot A \cdot G$ Phantom node

Using phantom node setup is crucial to allow standard graph-based aggregation!

	Case	$n_e \times n_e$	$\alpha_{\rm cond.}$	$n_{ m iter}$			
				Α		$G^{T} \cdot A \cdot G$	
				1L	ML	1L	ML
	I	30×30	3e+03	32	9	32	9
		60×60	1e+04	63	10	63	10
		90×90	3e+04	93	11	93	11
		120×120	5e+04	123	11	123	11
<u> </u>	II	30 × 30	2e+06	59	40	53	12
		60×60	1e+06	109	58	104	13
		90×90	2e+06	159	65	156	14
		120×120	1e+07	-	81	-	15
-	III	30×30	1e+04	46	25	42	11
		60×60	5e+04	86	33	83	13
\		90×90	1e+05	127	40	127	15
\		120×120	2e+05	170	44	167	15
		30×30	1e+05	54	16	54	11
	1 a	60×60	4e+05	106	21	105	14
		90×90	1e+06	157	24	157	16
		120×120	2e+06	-	26	-	16
		30×30	2e+07	78	38	76	16
	1c	60×60	7e+07	150	53	146	17
		90×90	1e+08	-	63	-	18
		120×120	2e+08	-	73	-	21

OC: 1.28-1.40

Null Space for Jump & Tip Enrichments

Prolongation/Restriction should preserve zero-energy modes!

2D elasticity problem has 3 Zero Energy Modes (ZEMs):

Null space for phantom node approach

- Standard DOFs are treated as usual.
- Phantom DOFs are treated like Standard DOFs
- Tip DOFs? Tricky...

Null space for shifted enrichment approach

- Enriched DOFs don't contribute to rigid body motion
 - Put 0 into their respective rows
- Change of basis transformation only for jump enrichment
 - Transform linear system & nullspace
 - → Tip DOFs are ignored during prolongation & restriction
 - → Tip DOF smoothing only on finest level (fine scale feature)

Smoothing

• Finest Level: Use special tip smoother D^{tip} in addition to standard (Block-) Gauss-Seidel smoothing \rightarrow multiplicative Schwarz

Reason for special smoothing:

- dense blocks (40x40 for quad4)
- high condition number
- Tip smoother: direct solve for each tip block
- Pre-smoother Post-smoother $u \leftarrow \operatorname{GaussSeidel}(u, \tilde{A}, b)$ Post-smoother $u \leftarrow u + D^{\operatorname{tip}} \cdot (b \tilde{A} \cdot u)$ $u \leftarrow u + D^{\operatorname{tip}} \cdot (b \tilde{A} \cdot u)$ $u \leftarrow \operatorname{GaussSeidel}(u, \tilde{A}, b)$

Pre-Post-smoother symmetry is important

- 3d geometrical tip-enrichment may require extra splitting of dense blocks
- All coarser levels: standard (Block-) Gauss-Seidel
- Coarsest Level: standard direct solve

Numerical Results for full XFEM system

CG preconditioned with AMG

Special tip smoother is essential to deal with tip enrichments!

	Case	$n_e \times n_e$	$\alpha_{\rm cond.}$	n _{iter}					
				1L	ML	ML, NS	ML, MS	ML, MS	, NS
	I	30 × 30	3e+03	32	9	9	9		9
		60×60	1e+04	63	10	10	10		10
	1	90×90	3e+04	93	11	11	11		11
		120×120	5e+04	123	11	11	11		11
		30×30	2e+07	115	84	75	21		18
	II	60×60	8e+08	-	115	97	24		20
	11	90×90	8e+09	-	141	114	27		23
'		120×120	3e+10	-	-	143	28		23
		30×30	5e+07	143	122	94	24		18
	III	60×60	1e+09	-	180	158	27		20
N	111	90×90	2e+10	-	-	-	29		20
\\		120×120	3e+10	-	-	-	37		26
		30×30	6e+05	66		31	16		16
	1 a	60×60	3e+06	117		31	18		18
		90×90	1e+07	165		33	20		20
		120×120	2e+07	-		32	19		19
	1c	30 × 30	1e+08	86		34	21		20
		60×60	7e+08	157		35	23		23
		90×90	2e+09	-		35	24		24
		120 × 120	3e+09	-		37	26		26

Operator complexity: 1.28-1.40

Concluding Remarks

Standard SA-AMG methods can be used, if proper input is provided!

Key components:

- System matrix must be in phantom-node form for jump DOF
 - Either you already have it, (voids, fluid-structure interaction, ...), or
 - ullet do a simple transformation $oldsymbol{G}^{\mathrm{T}} \cdot oldsymbol{A} \cdot oldsymbol{G} \cdot oldsymbol{G}^{-1} \cdot oldsymbol{u} = oldsymbol{G}^{\mathrm{T}} \cdot oldsymbol{f}$
- Simple Null space construction: zero entries for shifted enriched DOF
- Two-step smoothing on finest level (or add your own smoother)
- → Very good convergence behavior.

Current & Future Work

- What happens to tiny element fractions (conditioning)?
- 3d implementation (based on MueLu, the new Multigrid package in Trilinos)

